Калориметрия в физике высоких энергий

Татьяна Берже-Гринёва LAPP, Аннеси-ле-вье, Франция

ИСМАРТ-2008, Харьков 20 ноября

Физика высоких энергий: детекторы

Калориметры

Преимущества калориметров

- Чувствительность ко всем видам частиц (заряженых и нет)
- Энергетическое разрешение улучшается с Е

$$\frac{\sigma}{E} \approx \frac{1}{\sqrt{E}}$$
 калориметр $\frac{\sigma}{p} \approx p$ магнитный спектрометр

- Многопрофильные детекторы
 - Измерение энергии (основное применение)
 - Измерение направления частицы, начала ливня (сегментация)
 - Идентификация частиц (различный сигнал от электронов, адронов, гамма-квантов)
 - Измерение времени прихода частиц
 - Быстрая реакция → удобно для триггерной системы
- Достаточно выгодны по цене
 - Толщина для поглощения ливня ~ log E (в спектрометре ~ \sqrt{p})

4/23

Энергетическое разрешение

- утечки части ливня
- высокий диапазон энергий

(C)

(a)

1000

Однородные калориметры

Материалы калориметров, их свойства

Материал	CsI(Tl)	PbWO ₄	PbO	LKr
Плотность (г/см ³)	4.51	8.3	4.1	2.41
Радиационная длина (см)	1.85	0.9	2.5	4.7
Радиус Молера(см)	3.5	2.0	3.5	5.5

Высокая плотность \Rightarrow

компактность детектора:

- Возможность поместить внутри магнита
 - Уменьшение материала перед калориметром: улучшение σ_E
- Улучшение пространственного разрешения
- Длина ливня зависит от энергии:
 - BaBar (10ГэВ) CsI(Tl): 16-17.5 X_o
 - Асимметричный детектор, кристаллы короче сзади
 - L3 (100ГэВ) BGO: 22 X₀
 - CMS (1000ГэВ) PbWO₄: 25 X₀ 8/23

+30 событий

Материалы калориметров, их свойства

Материал	CsI(Tl)	PbWO ₄	PbO	LKr
Experiment	CLEO BaBar BELLE (B-factories)	CMS ALICE (LHC)	OPAL	NA48
Длина волны (нм)	560	560/420	330	147
Время затухания (нс)	1300	50/10		~85/2
Световыход ү /МэВ	4 10 ⁴	1.5 10 ²	~1	

- Длина волны: фотоумножитель или фотодиод, в магнитном поле или нет
- Допустимое время затухания сцинтилляции зависит от скорости прихода событий:
 - 100 Гц в BaBar
 - 1ГГц (25 событий каждые 25нс) в CMS
- Минимально допустимый световыход зависит от энергии эксперимента:
 - B-factories (>20МэВ) выбор CsI(Tl) (BaBar, Belle, CLEO)
 - Световыход от PbWO₄ не достаточен
 - LHC, CERN (>5.0ГэВ) выбор PbWO₄ (CMS, ALICE)

Радиационная стойкость

Материал	CsI(Tl)	PbWO ₄	PbO	LKr
Experiment	CLEO BaBar BELLE (B-factories)	CMS ALICE (LHC)	OPAL	NA48
Радиационная стойкость (Рад)	10k	10M	100k ?	высокая

- Радиационная стойкость
 - В основном проблема сцинтилляторов
 - ВаВаг до 3-6 Рад/фб⁻¹до 1.5кРад общая доза
 - СМЅ доза облучения 20-1500Рад час, до 1-10 МРад е+ү и 10¹³-10¹⁴ нейтронов
- Эффект на энергетическое разрешение

$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

- Уменьшение числа фотоэлектронов (a)
 - Корректируется калибровкой по ходу эксперимента
 - Важен для среднего диапазона энергий (10-50ГэВ)
- Изменение световыхода вдоль длины кристала (с)
 - Не возможно измерить по ходу эксперимента, отдельное R&D
 - Важен для высоких энергий (>50ГэВ)

Радиационная стойкость CsI(Tl)

BABAR

Однородность световыхода

Очень сложное измерение. Результаты часто противоположны! R.Y. Zhu, Fifth International Conference on Calorimetry in J. Allison, et al., NSS 1999, Conference Record, IEEE 1 HEP, Frascati Physics Series, vol. VI, 1996, pp. 589–598; (1999) 6.

Однородность световыхода

По завершению BaBar (доза ~1кРад) ухудшения разрешения нет

- 16 кристаллов (4 Crismatec, 11 Shanghai, 1 Beijing)
- Облучение Со⁶⁰ 1-2Рад/час
- Изменение градиента световыхода после 10кРад:
 - (-0.4±0.5)% Crismatec
 - (-4.0±0.7)% Shanghai
 - Уменьшение в передней части кристалла
- Ожидаемый эффект на разрешение при 10кРад
 - До 0.5ГеВ σ/Е хуже на 3% (не значительно)
 - Выше 1ГэВ улучшение за счет компенсации утечки ливня через заднюю стенку

Nuclear Instruments and Methods in Physics Research A 535 (2004) 452-456

Радиационная стойкость в СМЅ

- 75848 кристаллов PbWO₄
- Рад-стойкость до 107 Рад
- Но падение световыхода при сборе данных
 - Ухудшение прозрачности из-за центров окраски
 - Постоянная калибровка
- Изменений однородности световыхода при облучении нет (Zhu et al)
 - Но этот тест был также негативен для CsI(Tl)
 - Дополнительные тесты?

The CMS experiment at the CERN LHC. 2008 $JINST_3$ S08004

12k BGO

L3 BGO Resolution

Разрешение полученое в тестовом пучке:

$$1.5\%/\sqrt{E(\text{GeV})} \oplus 0.4\%$$

10

Но! в эксперименте измерено: $\sigma_{\rm E}/{\rm E}({\rm E}=45{\rm F})=1.2\%$ Постоянный член ~1.2%

Причины:

кристаллов

• Температурные эффекты

Неоднородные калориметры

Полупроводниковые (Si)

- ✓ Высокая плотность
- ✓ Хороший сигнал
- ✓ Радиационная стойкость?
- 🗶 Дорого

Инертная жидкость

- ✓ Хорошая радиационная стойкость
- Однородность детектора
- ✓ Легко калибрируются
- ✓ Хорошее разрешение

Необходимость охладительного и очистительного оборудования

Газовые

 $\leq 20\% / \sqrt{E(\text{GeV})}$

- X Низкая плотность
- 🛪 Плохая стабильность
- 🗙 Плохая однородность
- Легко сегментируются
- / Дешево

ALEPH

- Сцинтилляторы 5.7–18%/ ✓Легко сегментируются
- ✓ Не дороги
- Быстрый сигнал
- Достаточный световыход
- ✓ Компенсируемые
- 🗙 Старение, радиация
- × Неоднородноєть световыхода _{16/23}

SED

Электромагнитный калориметр ATLAS

- Материал: Свинец / Аргон
- Сигнал: ионизационный заряд
 - Без амплификации
- Форма: аккордион
 - Герметичность
 - Однородность в ф
 - Скорость прихода сигнала
- 173000 каналов

большая часть електромагнитного ливня

Пресамплер ∆η×∆ф=0.025×0.1 Оценка потерь энергии перед калориметром

Калориметры для LHC: CMS и ATLAS

Индивидуальные характаристики

- Кристаллы 75848 PbW0₄

 $\sim 0.0174 \times 0.0174 \times 25.8 X_{o}$ • $\sigma_{E}/E = 2.8\%/\sqrt{E \oplus 124 MeV/E \oplus 0.26\%}$

- однородность < 0.5%
- охват |η|<3.0

- 3 слоя по глубине |η|<2.5
- $\sigma_{E}/E=10\%/\sqrt{E\oplus 0.245/E\oplus 0.7\%}$
- направление σ_{θ} ~50mpaд/ \sqrt{E}
- однородность < 0.5% до 300ГэВ

Калибровка калориметров ATLAS и CMS

- Калибровка известными резонансами Z(J/ψ)→ее задает энергетическую шкалу
- B ATLAS межкалибровка удаленных участков
 - ~30k событий Z→ee (0.1фб⁻¹) для однородности ~0.7% в 0.1х0.1 (η × φ)
- В CMS, разница световыхода между отдельными кристаллами
 - Начальная калибровка: однородность до 2-3%
 - Нужно 2фб⁻¹ для оптимальной для поиска Хиггса однородности 0.6%

Международный линейный ускоритель

- Следующий большой проект: ILC
- Энергия: 2×250ГэВ (upgrade 2×500ГэВ)
- 1 interaction region
- 2 детектора (3-4 проекта)

ilc

Будущие эксперименты

Сегментация очень важна для разрешения струй!

Алгоритм потока частиц: калориметр работает как треккер.

particles in jet	fraction of energy in jet	detector	single particle resolution	jet energy resolution
charged particles	60 %	tracker	$rac{\sigma_{p_t}}{p_t}\sim 0.01\%\cdot p_t$	negligible
photons	30 %	ECAL	$\frac{\sigma_E}{E} \sim 15\%/\sqrt{E}$	$\sim 5\%/\sqrt{E_{jet}}$
neutral hadrons	10 %	HCAL+ECAL	$\frac{\sigma_E}{E}\sim 45\%/\sqrt{E}$	$\sim 15\%/\sqrt{E_{jet}}$
				0

<u>Будущие эксперименты</u>

CALICE collaboration (Calorimeter for the Linear Collider Experiment)

Адронный калориметр

•Аналоговые сцинт тайлы

 $-3X3CM^2$

-Кремневый ФЭУ

•Газовый цифровой –RPC, GEM, µMEGAS

сцинтиллятор+ Черенков волокна

Большое спасибо за внимание!

