Детекторы рентгеновского излучения на основе селенида цинка

Галкин С.Н., Рыжиков В.Д.

Институт сцинтилляционных материалов НАН Украины,

г. Харьков, пр. Ленина 60

galkin@isc.kharkov.com

Физические характеристики сцинтилляторов *

Параметри	CsI(TI)	CdWO₄	ZnWO₄	Gd ₂ O ₂ S :Pr,Ce,F	Gd ₂ O ₂ S :Tb,Ce	Lu₂SiO₅ [:] Ce (LSO:Ce)	ZnSe:Al	ZnSe:Te
Плотность, г/см ³	4,51	8,00	7,87	7,34	7,34	7,4	5,42	5,42
Ζ _{эфφ}	54	66	61	62	62	66,4	33	33
Т _{плавления} , °С	621	1325	1200	Разлаг.	Разлаг.	2150	1520	1520
Структура	Кубич	Монокл	Монокл	Тетраг	Кубич	Монокл	Кубич	Кубич
Твердость по Моосу	2	5	5	6	6	6	5	5
Показатель преломления	1,79	2,3	2,2	2	2	1,82	2,5	2,5
λ _{мах} , нм	550	495	490	520	550	420	610	640
Коэф. ослабления собственного излучения, см ⁻¹	0,05	0,03	0,05	1	0,6	0,04	0,3	0,2
I для 662кэВ, (*10 ³) фотон/МеВ	52	19	11	35	35	30	65	73
Рад. стойкость, рад	10 ⁵	10 ⁶	10 ⁵	10 ⁷	10 ⁷	10 ⁸	10 ⁷	10 ⁷
т, мкс	1	5	3	4	600	0,04	2	40
Послесвечение, % через (Змс)	2	0,1	0,2	0,1	1	0,01	0,1	0,6

*М.Е.Глобус, Б.В.Гринев Неорганические сцинтилляторы, Харьков, Акта, 2000г.

Спектры люминесценции кристаллов на основе ZnSe в сравнении с другими сцинтилляторами и областью чувствительности Si фотодиода

 λ , nm

Конструкции детекторов

Комплексы дефектов

ZnSe-ZnTeZnSe-Al2Se3 $(Te_{Se}-V_{Zn}^{-})$ $(Te_{Se}-Zn_i-V_{Zn}^{-})$ $(Zn_i^{+}\cdot V_{Zn}^{-})$ $(V_{zn}^{2-}\cdot Zn_i^{2+})$ $(Al_{Zn}^{-}-Zn_i^{2+}-V_{Zn}^{-})$

 $n_n = n_i + N_D$ $N_D \rangle \rangle n_i$ $n_n \approx N_D$

где: n_i – концентрация собственных электронов; n_n – концентрация электронов в полупроводнике за счет донорной примеси; N_d - концентрация донорных примесей.

Легирование селенида цинка катионными примесями

Спектры фото- а) и радиолюминесценции б) кристаллов ZnSe-Eu

Параметры легированных кристаллов селенида цинка

Сцинтиллятор	Концентрация легирующей примеси, N*см ⁻³	Удельное электрическое сопротивление, Ом*м	Время высвечивания, мкс	Уровень послесвечения через 3 мс, после радиоимпульса, %
ZnSe-Te	3*10 ²⁰	1000	20-50	0,2
ZnSe-Al	5*10 ¹⁹	100	2	0,05
ZnSe-Ga	4*10 ¹⁹	150	6	0,06
ZnSe-Bi	3*10 ¹⁹	5000	13	0,1

Кинетика радиолюминесценции образцов с разным типом сцинтилляционных комплексов

Изменение времени высвечивания кристалла ZnSe-Al в зависимости от температуры отжига

Однородность световыхода образцов с разным типом сцинтилляционных комплексов

Топограммы светового выхода образцов селенида цинка, легированных алюминием а) и теллуром б).

Выводы

- Сцинтилляторы на основе селенида цинка имеют преимущества перед другими материалами при регистрации низкоэнергетических рентгеновских и гаммаквантов
- Имеется возможность повышения эффективности регистрации за счет совершенствования конструкции детектора
- 3. Показана возможность получения активаторной люминесценции в кристаллах ZnSe