Физическая природа температурной зависимости радиационной стойкости блоков детектирования на основе кристаллов вольфрамата свинца (PWO).

С.Ф. Бурачас, А.А. Васильев, М.С. Ипполитов, В.И. Манько, С. А. Никулин, А.Л. Апанасенко*, А.Н. Васильев**, А.В. Узунян**, Г. Тамулайтис***

> РНЦ «Курчатовский Институт», Москва, Россия *Харьковский университет, Харьков, Украина **Институт Физики Высоких Энергий, Протвино, Россия ***Вильнюсский университет, Вильнюс, Литва

Содержание доклада

- 1. Введение
- 2. Эксперимент
- 3. Экспериментальные результаты
- 4. Обсуждение
- 5. Заключение
- 6. Литература

Введение

- Новые ускорителей для физики высоких энергий –LHC, FAIR.
- Развитие ЕМ-калориметрии.
- Нужны хорошие энергетическое и временное разрешения.
- Актуален поиск новых перспективных материалов ЕМ-калориметров.
- Популярны сцинтилляционные оксидные кристаллы PWO (ALICE, CMS, PANDA), BGO (L3)
- Факты: понижение температуры РШО приводит к: -1)увеличению световыхода [1,2] 2)снижению радиационной стойкости [3,4]
- Динамический диапазон: ALICE 10Мэв-10 ГэВ, (high P_t до 100 ГэВ), малые радиационные загрузки, раб. температура -25°С;
 - Эксперимент CMS высокие энергии, высокие радиационные нагрузки T=+20°С.
 - PANDA ориентация на низкие энергии и относительно высокие радиационные загрузки, раб. температура -25° С.
- Модель точечных дефектов неудовлетворительно объясняет все экспериментальные данные по PWO[5].
- Модель кластерных дефектов адекватно объясняет все экспериментальные данные, полученные по изменению свойств РШО при отжиге и облучении кристаллов[6-9].

Мотивация к изучению природы зависимости радиационных свойств кристаллов РWO от температуры

В данной работе представлены результаты одновременных измерений оптического пропускания и светового выхода кристаллов PWO, подвергшихся воздействию гамма-излучения. Температура исследуемых кристаллов варьировалась в диапазоне от -25 °C до +60°C. Проведено сопоставление радиационной стойкости кристаллов, полученных из различного сырья при разных легированиях и режимах отжига. Показано, что экспериментальные результаты можно качественно объяснить в рамках кластерной модели.

Эксперимент

Исследования проводились в ИФВЭ (Протвино) на установке, обеспечивающей непрерывное измерение интенсивности сцинтилляционного сигнала кристаллов РWО в диапазоне температур от +20°С до -20° С непосредственно в поле действия гамма-излучения (мощность дозы 2 и 20 рад/час) [3]. Таблица 1

№ кри сталла	Сы-рьё /Nроста	Легиро вание/ концен трация, ppm	Отжиг на воздухе °C/h	Прозра чнюсть "% 360/420 нм	LY,phe/ MeV	I ₊₂₀ /I- ₂₀ ,% 2rad/h	Δ, % I- ₂₀ - I+ ₂₀	I ₊₂₀ /I ₋₂₀ ,% 20rad/ł	Δ, % I-20- I+20
Размер:22*22*180мм.; производители: b- БЗТХИ; а- ОАО «Северные кристаллы»									
b389	211/ N/A	N⁄A	N⁄A	31,0/70,5	10,3	5 / 18	13	11 / 36	25
6404	111/N/A	N/A	N⁄A	22,9/66,8	8,9	8 / 27	19	16 / 52	36
a1412	Ш/5	Y/100	600/3	29,4 64,3	9,2	1 / 17	16	16 / 54	38
a1434	2П/4	Y/100	560/2	33,4 65,6	9,0	5 / 20	15	18 / 44	26
a15500	111/1	Y/90	600/3	39,1 70,2	12,0	2 / 18	16	10 / 45	35
a15517	111/1	Gd/80	600/3	42,471,3	10,5	1 /16	15	8 / 43	35
a15851	111/1	Gd/80	580/2	41,1/71,3	11,0	5 / 21	16	15 / 51	36
a15608	211/1	Gd/80	600/3	37,2/69,0	10,9	2 / 13	11	9 / 30	21
16618	111/1	La/38	560/2	50,6/71,9	11,2	5 / 23	18	20 / 50	30
16628	117/1	La,Y/ 22/20	560/2	46,9/71,3	12,3	6 / 26	20	26 / 60	34

Эксперимент

Для партии из 6 кристаллов PWO измерялась дозовая зависимость оптического пропускания при нормальной (+20°C) и повышенной (+60°C) температуре на длине волны 420 нм. Измерения проводились в РНЦ «Курчатовский Институт» перед облучением и через 3 минуты после окончания облучения дозой 3 кРад (установка ГУТ-200М, мощность дозы 15 крад/час).

Характеристики кристаллов в таблице 2.

Таблица 2

№ кри	Сы	Nº	Легиро	Прозрач	Температур	Температура	
сталла	рьё	роста	вание./	ность,	a T=20 °C	T=60 °C	
			ppm	420нм,	Падение	Падение	
				%	прозрачнос	прозрачности,	
					ти,%	%	
Размеры: 30*30*230мм, производитель ОАО «Северные кристаллы»							
64	2П	6	Y/90	71.3	12,3	6,1	
67	1Π	2	Y/90	70.0	12,9	5,0	
68	1Π	3	Y/90	72.1	13,3	5,5	
70	1Π	5	Y/90	70.0	!6,2	7,2	
80	1П	4	Y/100	69.1	12,5	5,4	
81	1Π	5	Y/100	71.3	13,7	7,0	

Рис.1 Зависимость изменения относительной величины сцинтилляционного сигнала (слева) и сигнала голубого светодиода (справа) от времени для различных кристаллов с температурой +20°С и - 20 °С при гамма-облучении мощностью дозы 2 рад/час.

Рис. 2. Зависимость изменения относительной величины сцинтилляционного сигнала от времени для различных кристаллов с температурой +20 °C и -20°C при гамма-облучении мощностью дозы 2 рад/час (вверху) и 20 рад/час (внизу).

Рис.3. Зависимость относительной величины потерь сцинтилляционного сигнала от температуры кристалла после их гамма-облучения мощностью дозы 20 рад/час в течение 80 часов. (После каждого цикла облучения при фиксированной температуре +20 °C, +5 °C, -10 °C и -23 °C кристаллы восстанавливались до их первоначального состояния на дневном свету при температуре ~ +40 °C)

Рис.4 Восстановление кристаллов РШО после прекращения облучения при температурах –25°С и +20°С

Dose rate 2rad/h

Рис.4. Относительные изменения «токового» сигнала различных кристаллов при переходе от температуры +20°С к -20°С.

Результаты

Световыход и оптическое пропускание снижаются коррелированным образом, в согласии с общепринятым предположением, что снижение световыход в основном вызвано выросшим поглощением света в области эмиссии.

Понижение температуры кристаллов существенно замедляет достижение насыщения световыхода.

Уровень насыщения сильно зависят от величины дозы облучения. Абсолютное значение, к которому световыход асимптотически приближается под непрерывным облучением (т.н. "квазиплато") не зависит линейно от мощности дозы.

Зависимость уменьшения падения световыхода от температуры в диапазоне от -20°С до +20°С близка к линейной.

При понижении температуры от +20°С до -20°С световыход 10 кристаллов увеличился одинаково, приблизительно в 3 раза.

Увеличение температуры кристалла от +20°С до +60°С повышает устойчивость прозрачности при облучении в среднем в 2,3 раза.

Световыход кристаллов не показывает никакого заметного восстановления после прекращения облучения в течение десятков часов при температуре -25°С. При повышении температуры до +20°С гарантирует восстановление исходного световыхода кристаллов приблизительно в течение 100 часов.

Обсуждение

Положения кластерной модели

YUN1

- 1)На световой выход PWO выход PWO влияет поглощение в кластерах оксидов вольфрама, которые присутствуют в регулярной решетке PbWO₄.
- Формирование кластерных дефектов переменной валентности характерно для оксидных кристаллов [9].

2) Окраска кристалла зависит от состава кластеров и их концентрации. Состав может контролироваться в процессе роста и отжига.

- Оптимизация этих процессов позволяет добиться ~100% получения оптически прозрачных кристаллов.
- Состав кластера описывается формулой: WO_{3-x} = (1 2a b) WO₃ + aW₂O₅ + bWO₂ (1)
- где х=а+b. Здесь коэффициенты *а* и *b* показывают относительное содержание W⁵⁺ и W⁴⁺ в кластере и связаны с дефицитом кислорода по сравнению с чистым оксидом вольфрама WO₃, содержащим только ионы W⁶⁺.
- Спектр поглощения в кластерах и, следовательно, цвет кристалла, который в чистом виде является прозрачным в видимом диапазоне, зависит от состава кластеровт.е. может быть связан с коэффициентами *а* и *b*.
- Полагаем, что бесцветные кристаллы, изготовленные для проектов CERN CMS и ALICE, имеют оптимальное значение x = ~0.11 (a = ~0.11, b = 0) [6,9].
- Согласно нашим данным, состав кластеров WO_{3-х} в кристаллах PWO зависит от условий роста и может быть изменен термической обработкой.

Слайд 13

YUN1 Stanislav Burachasd; 15.11.2008

Цвет состава WO3-х при различном содержании W₂O₅ и WO₂, выраженного коэффициентами *a* и *b*, согласно уравнению :WO_{3-x} = (1 - 2*a b*) WO₃ + *a*W₂O₅ + *b*WO₂, а также область максимального оптического

поглощения.

Таблица 3.

a b	0	~0,11	0.115	0.16	1
0	WO₃ Желтый (410-450) нм	~WO _{2.89} Бес цветный	WO _{2.885} Голубой (580-595)нм		WO _{2,5} Синий (580- 595)нм
0.12				WO _{2.72} Фиолет. (500- 560)нм	
1	WO ₂ ,Черно- коричневый (450-600) нм				

Отжиг в обогащенной кислородом атмосфере увеличивает концентрацию ионов кислорода в кластерах (т.е. снижает *x*).Такой отжиг приводит к уменьшению наведенного поглощения (НП) кристалла и времени его восстановления, в то время как отжиг в восстановительной среде дает противоположный результат[6]. Концентрация кластерных дефектов в кристалле зависит от его стехиометрии ,которая обусловлена чистотой сырья. *Чем меньше* нарушена стехиометрия кристалла, тем выше его радиационная стойкость.

Окрашивание исходного, бесцветного кристалла РWO связано с повышением содержания ионов W5+ и W4+ в составе образуются результате которые кластеров, 8 восстановительного отжига или облучения[8]. Ионы Омогут образоваться только при облучении. Отжиг просто меняет содержание кислорода в КД, оставляя eso двухвалентном состоянии. Наличие облученном **O**⁻ 6 делает процесс обратимым. B облученных кристалле исходный кластеров кристаллах состав восстанавливается, а после их термической обработке стабильный.

Неравновесное состояние кристалла после его гамма-облучения

В результате облучения часть ионов кислорода в КД теряет электроны, которые захватываются ионами вольфрама с переходом их в низшее зарядовое состояние. Предполагается, что часть ионов О вытесняются наружу кластера. Таким образом, в КД формируются заряженные комплексы, содержащие ионы W в более низком зарядовом состоянии по сравнению с исходным (до облучения) эффективно отрицательным зарядом, и ионы кислорода О одним электроном (эффективно положительно С заряженные узлы О). При этом происходит окрашивание бесцветного кристалла РЮО за счет повышения содержания ионов W⁵⁺ в составе кластеров. Можно полагать, что появление заряженных комплексов, вызывает кулоновское взаимодействие, которое определяет направление возвращения ионов О к своим кластерам после ИХ «высвобождения».

Интерпретация характера нелинейного снижения световыхода кристалла

- В начале облучения влияние процесса радиационного преобразования W⁶⁺ в ионы W⁵⁺ на изменение состава КД максимальное. По мере накопления W⁵⁺ увеличивается вероятность обратного перехода в W⁶⁺ (термическое восстановление). Это замедляет скорость изменения состава КД и замедляет падение световыхода.
- Насыщение наступает при выравнивании скоростей радиационного преобразования и термического восстановления W^{6+.}

При достижении насыщения, радиационно преобразованный состав кластеров остается неизменным. Световыход кристалла под дальнейшим воздействием облучения не уменьшается. Состава КД под облучением может быть выражено как:

 $\mathsf{WO}_{3-x} \to \{ [\mathsf{WO}_{3-x-\varDelta x}]^- \leftrightarrow [\Delta a \ \mathsf{O}^-]^+ \} ,$

где $WO_{3-x-\Delta x} = [1 - 2(a + \Delta a)]WO_3 + (a + \Delta a)W_2O_5 (2).$

Δа, *Δx* – изменение соответствующих коэффициентов состава, вызванное облучением.

- Выражение (2) описывает заключительный результат фазового состава кластеров подвергнутых облучению, который определяет уровень НП, когда кристалл вышел на «квазиплато». В соответствии с новым составом КД изменяется и спектр оптического поглощения КД, а также кристалла в целом.
- Оставшиеся ионы кислорода не влияют на окраску кристалла [8].
- После прекращения облучения остается действующим только процесс термического восстановления W⁶⁺, вследствие чего уменьшается плотность заряженных комплексов. Этот процесс полностью прекращается, когда восстанавливается первоначальный электрически нейтральный состав кластеров (WO_{3-x}), в которых отсутствуют ионы О[−].

Температура -25°С

При температуре -25°С восстановление световыхода кристалла практически отсутствует.

Такое резкое увеличение времени восстановления при относительно небольшом понижении температуры кристалла можно объяснить сильной температурной зависимостью перехода от W⁵⁺ к W⁶⁺.

В нашей модели этот переход соответствует возвращению атомов кислорода к кластерам через потенциальный барьер.

Вероятно, что температурная зависимость этого перехода усиливается наличием фононов определенной энергии, влиянием электрического поля или другими дополнительными эффектами. Требуется дальнейшее изучение этого результата.

Заключение

•. Увеличение световыхода кристаллов PWO с понижением температуры не зависит от технологических особенностей их получения.

•Падение световыхода кристаллов РШО при облучении при фиксированной температуре связано с радиационным преобразованием состава кластерных дефектов (КД), который вызывает дополнительное поглощение света в области прозрачности кристаллов.

•Снижение радиационной стойкости кристаллов при уменьшении их температуры вызвано увеличением времени восстановления КД, которое зависит еще и от технологических особенностей получения кристалла.

•Чем выше выбрана температура эксплуатации кристаллов PWO, тем меньше их радиационная зависимость.

Литература

- 1. D. Aleksandov, S. Burachas, M. Ippolitov, et.al. Nucl. Inst. and Meth. A550 (2005) 169-184.
- 2. R. W. Novotny, IEEE Trans. Nucl. Sci., 51, 3076-3080, 2004.
- 3. P. Semenov, A. Uzunian, A. Davidenko, et al., Nucl. Inst. Meth. A582 (2007) 575-580.
- 4 R. Novotny, S. Burachas ,W. Doring, et al., IEEE Trans. Nucl. Sci., 55, (2008) 1283-1288.
- 5. M. Nikl, Phys. Stat. Sol. (a) 178 (2000) 595.
- 6. S. Burachas, S. Beloglovski, I. Makov, et al., Nucl. Inst. Meth. A 505 (2003) 656
- 7. S. Burachas, S. Beloglovsky, Yu. Saveliev, et al., Functional Materials 12 (2005) 287.
- 8. S. Burachas, Yu. Saveliev, M. Ippolitov et al. J. Cryst. Growth 293 (2006) 62-67.
- 9. S. Burachas, A. Vasiliev, M. Ippolitov, et al., Kristallografiya 52 (2007) 1124-1130.
- 10. Gmelin Handbuch der Anorganische Chemie, System No. 54, Wolfram B2 (Springer Verlag, Berlin, 1997).
- 11. R.Y.Zhu, Nucl. Instr. and Meth. A 413 (1998) 297-311
- 12 S. Burachas, M. Ippolitov, V. Manko et al., Nucl. Inst. Meth., submitted for publication.

