
Калориметрия в физике высоких энергий

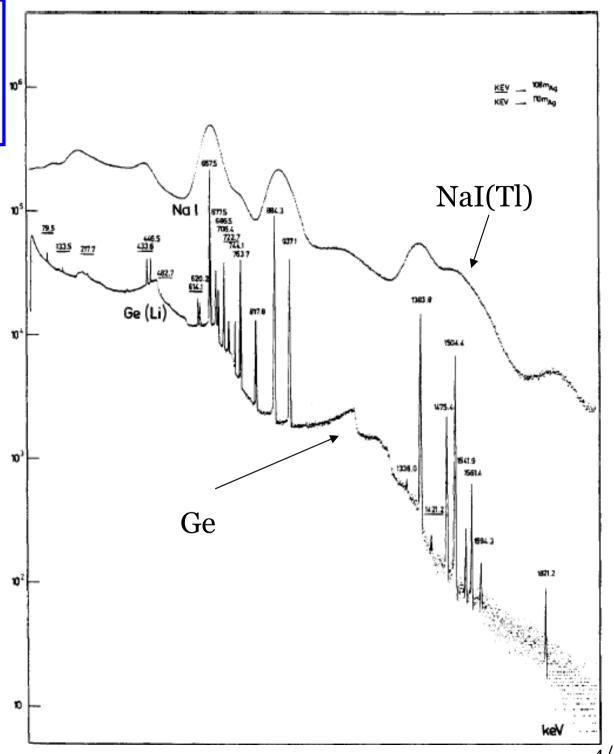
Татьяна Берже-Гринёва LAPP, Аннеси-ле-вье, Франция

> ИСМАРТ-2008, Харьков 20 ноября

Физика высоких энергий: детекторы

Преимущества калориметров

- Чувствительность ко всем видам частиц (заряженых и нет)
- Энергетическое разрешение улучшается с Е


$$\frac{\sigma}{E} \approx \frac{1}{\sqrt{E}}$$
 калориметр $\frac{\sigma}{p} \approx p$ магнитный спектрометр

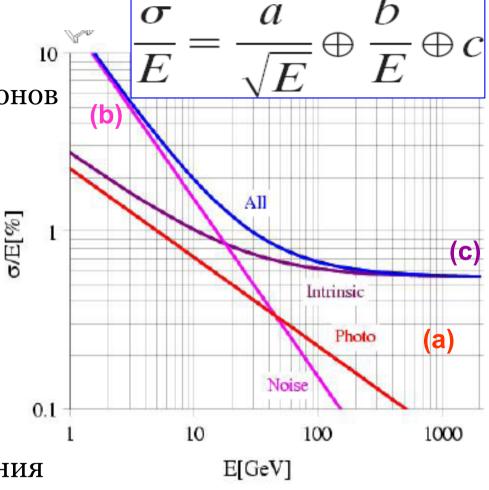
- Многопрофильные детекторы
 - Измерение энергии (основное применение)
 - Измерение направления частицы, начала ливня (сегментация)
 - Идентификация частиц (различный сигнал от электронов, адронов, гамма-квантов)
 - Измерение времени прихода частиц
 - Быстрая реакция → удобно для триггерной системы
- Достаточно выгодны по цене
 - Толщина для поглощения ливня $\sim \log E$ (в спектрометре $\sim \sqrt{p}$)

Энергетическое разрешение

Спектр фотонов ¹⁰⁸Ад измеренный Ge кристаллом и Сцинтиллятором NaI(Tl).

Энергетическое разрешение

• а – стохастический


- флуктуации числа (фото)электронов
- средний диапазон энергий

• b - шумовой

- <100MэB/канал
- низкий диапазон энергий
- электронный шум:
 - Меньше если детектируется свет
 - Больше если заряд

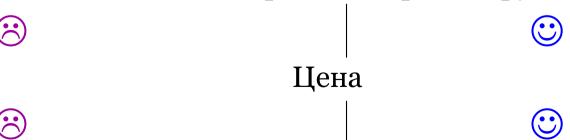
• с – постоянный (<1%)

- неопределённости калибрирования
- неоднородности (сигнала, материала детектора, температуры и т. п.)
- утечки части ливня
- высокий диапазон энергий

Геометрия калориметров

Гомогенные/Однородные Неоднородные/Сандвич

слоя поглощающего (большое Z) и детектирующего материалов


Энергетическое разрешение

(5-20%,~√толщина поглощающего слоя) \bigcirc (2-5%) Сегментация

(поперечная)

(поперечная и продольная)

Компенсация: разница между сигналом от електронов и адронов (для измерения энергий струй)

Все адронные калориметры

Однородные калориметры

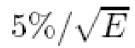
Полупроводниковые (Ge, Si)

✓ Великолепное разрешение (~кэВ)

$$\frac{\sigma}{E}$$
 $\propto \frac{\sqrt{F}}{\sqrt{N_{\rm eh}}}$ F<< 1 (фактор Фано) $N_{\rm eh}$ $\approx 10^5$

- **×** Оптимальны для низких энергий
- **×** Очень дорогие

Инертная жидкость (LKr)

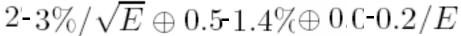

- ✓ Хорошая радиационная стойкость
- ✓ Однородность детектора
- **×** Необходимость охладительного и очистительного оборудования

$1.3.2\%/\sqrt{E} \oplus 0.42\% \oplus 0.09/E$

Черенков (PbO)

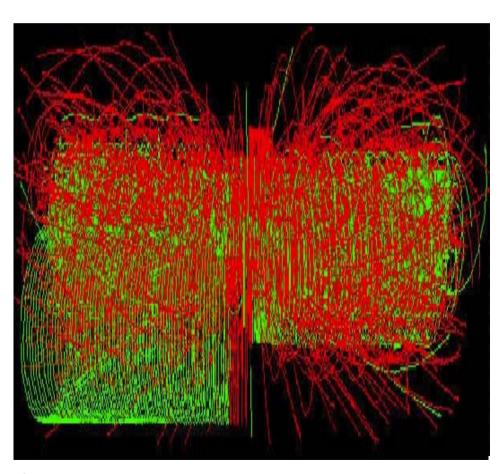
- ★ Низкий световыход (1/10⁴ NaI)
- **×** Плохая радиационная стойкость (PbF, лучше)
- **x** λ < 300-350nm





Сцинтилляторы

- ✓ Высокая плотность
- **×** Не однородность кристаллов
- **×** Цена
- ✓ Свойства «на заказ»



Материалы калориметров, их свойства

Материал	CsI(Tl)	PbWO ₄	PbO	LKr
Плотность (г/см³)	4.51	8.3	4.1	2.41
Радиационная длина (см)	1.85	0.9	2.5	4.7
Радиус Молера(см)	3.5	2.0	3.5	5.5

+30 событий

Высокая плотность ⇒

компактность детектора:

- Возможность поместить внутри магнита
 - Уменьшение материала перед калориметром: улучшение σ_E
- Улучшение пространственного разрешения
- Длина ливня зависит от энергии:
 - BaBar (10Γ₂B) CsI(Tl): 16-17.5 X_o
 - Асимметричный детектор, кристаллы короче сзади
 - L3 (100ГэВ) BGO: 22 X₀
 - CMS (1000ΓэΒ) PbWO₄: 25 X_o

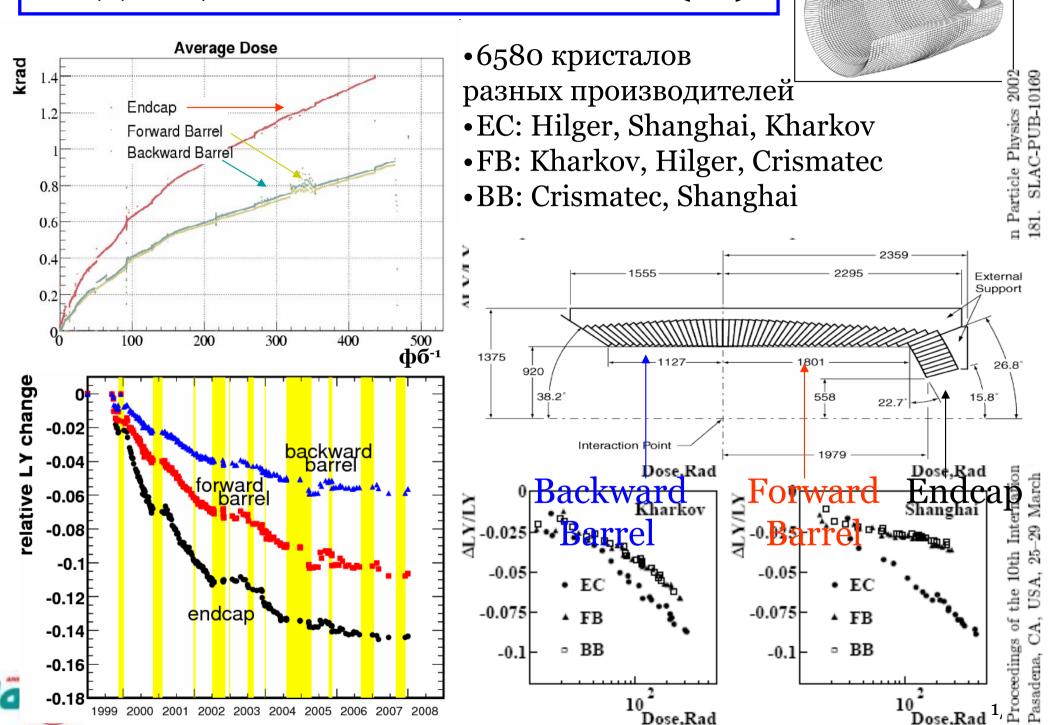
Материалы калориметров, их свойства

Материал	CsI(Tl)	PbWO ₄	PbO	LKr
Experiment	CLEO BaBar BELLE (B-factories)	CMS ALICE (LHC)	OPAL	NA48
Длина волны (нм)	560	560/420	330	147
Время затухания (нс)	1300	50/10		~85/2
Световыход ү /МэВ	4 104	1.5 10 ²	~1	

- Длина волны: фотоумножитель или фотодиод, в магнитном поле или нет
- Допустимое время затухания сцинтилляции зависит от скорости прихода событий:
 - 100 Гц в BaBar
 - 1ГГц (25 событий каждые 25нс) в CMS
- Минимально допустимый световыход зависит от энергии эксперимента:
 - B-factories (>20МэВ) выбор CsI(Tl) (BaBar, Belle, CLEO)
 - Световыход от PbWO₄ не достаточен
 - LHC, CERN (>5.оГэВ) выбор $PbWO_4$ (CMS, ALICE)

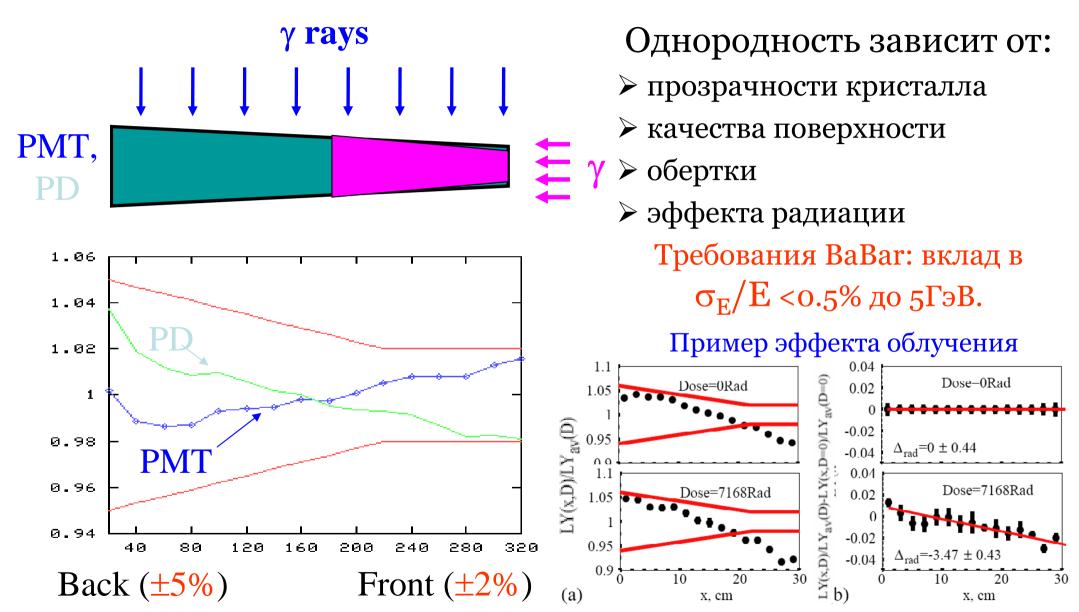
Радиационная стойкость

Материал	CsI(Tl)	PbWO ₄	PbO	LKr
Experiment	CLEO BaBar BELLE (B-factories)	CMS ALICE (LHC)	OPAL	NA48
Радиационная стойкость (Рад)	10k	10M	100k?	высокая


- Радиационная стойкость
 - В основном проблема сцинтилляторов
 - ВаВаг до 3-6 Рад/фб⁻¹ до 1.5кРад общая доза
 - CMS доза облучения 20-1500Рад час, до 1-10 МРад $e+\gamma$ и 10^{13} - 10^{14} нейтронов
- Эффект на энергетическое разрешение

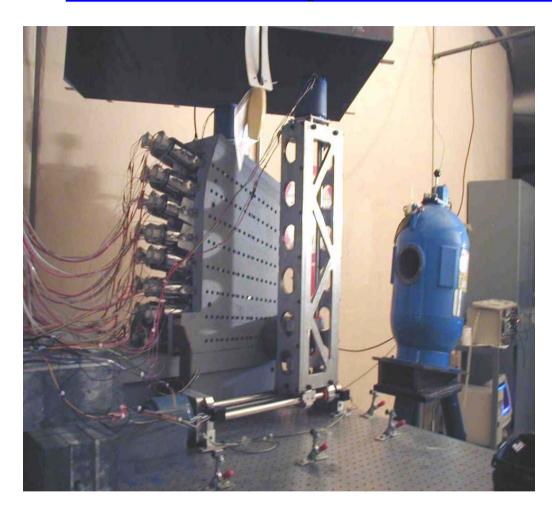
$$\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

- Уменьшение числа фотоэлектронов (а)
 - Корректируется калибровкой по ходу эксперимента
 - Важен для среднего диапазона энергий (10-50ГэВ)
- Изменение световыхода вдоль длины кристала (с)
 - Не возможно измерить по ходу эксперимента, отдельное R&D
 - Важен для высоких энергий (>50ГэВ)



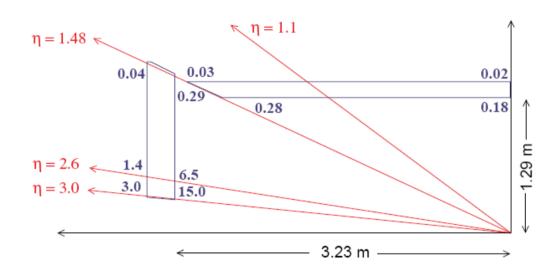
Радиационная стойкость CsI(Tl)

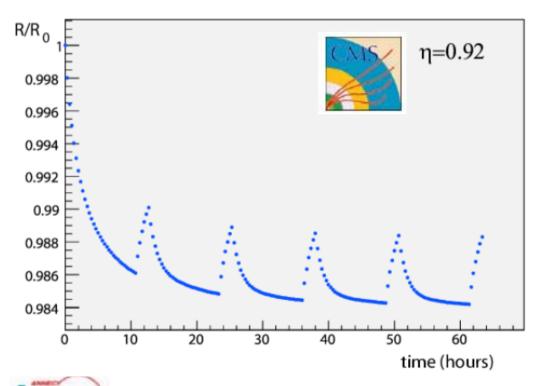
BABAR

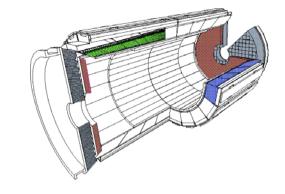

Однородность световыхода

Очень сложное измерение. Результаты часто противоположны!

R.Y. Zhu, Fifth International Conference on Calorimetry in J. Allison, et al., NSS 1999, Conference Record, IEEE 1 HEP, Frascati Physics Series, vol. VI, 1996, pp. 589–598; (1999) 6.


Однородность световыхода




По завершению BaBar (доза ~1кРад) ухудшения разрешения нет

- 16 кристаллов (4 Crismatec,
 11 Shanghai, 1 Beijing)
- Облучение Co⁶⁰ 1-2Рад/час
- Изменение градиента световыхода после 10кРад:
 - (-0.4±0.5)% Crismatec
 - (-4.0±0.7)% Shanghai
 - Уменьшение в передней части кристалла
- Ожидаемый эффект на разрешение при 10кРад
 - До 0.5 ГеВ σ /Е хуже на 3% (не значительно)
 - Выше 1ГэВ улучшение за счет компенсации утечки ливня через заднюю стенку

Радиационная стойкость в CMS

- 75848 кристаллов PbWO₄
- Рад-стойкость до 107 Рад
- Но падение световыхода при сборе данных
 - Ухудшение прозрачности из-за центров окраски
 - Постоянная калибровка
- Изменений однородности световыхода при облучении нет (Zhu et al)
 - Но этот тест был также негативен для CsI(Tl)
 - Дополнительные тесты?

The CMS experiment at the CERN LHC. 2008 JINST 3 S08004

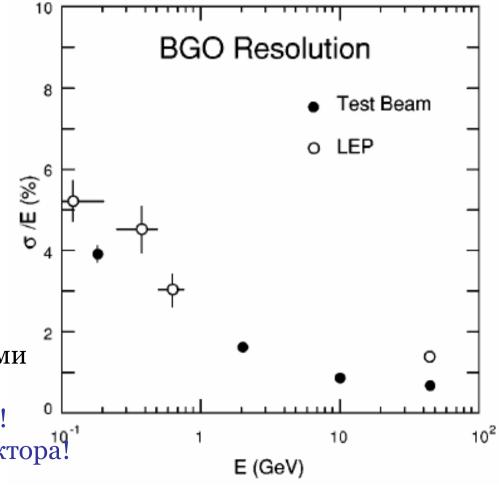
L3 BGO Resolution

12k BGO

Разрешение полученое в тестовом пучке:

$$1.5\%/\sqrt{E(\text{GeV})} \oplus 0.4\%$$

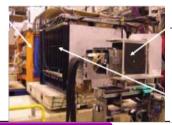
Но! в эксперименте измерено:


$$σ_E/E(E=45Γ3B)=1.2%$$

Постоянный член ~1.2%

Причины:

- Температурные эффекты
- •Электроны взаимодействующие на краях кристаллов
- Разница в световыходах между кристаллами


Контроль качества кристаллов очень важен! Проект может отличатся от конечного детектора!

Неоднородные калориметры

Полупроводниковые (Si)

- ✓ Высокая плотность
- ✓ Хороший сигнал
- ✓ Радиационная стойкость?
- **×** Дорого

 $\leq 10\%/\sqrt{E}$ (GeV)

Газовые

 $\leq 20\%/\sqrt{E(\text{GeV})}$

- 🗶 Низкая плотность
- **×** Плохая стабильность
- **х** Плохая однородность

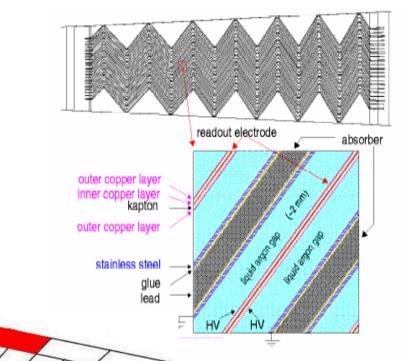
- ✓ Легко сегментируются
- Дешево

ALEPH

Инертная жидкость

- ✓ Хорошая радиационная стойкость
- ✓ Однородность детектора
- ✓ Легко калибрируются
- ✓ Хорошее разрешение
- **ж** Необходимость охладительного и очистительного оборудования

- ✓Легко сегментируются
- ✓ Не дороги
- ✓ Быстрый сигнал
- ✓ Достаточный световыход
- ✓ Компенсируемые
- **х** Старение, радиация
- **×** Неоднородноєть световыхода



Электромагнитный калориметр ATLAS

- Материал: Свинец / Аргон
- Сигнал: ионизационный заряд
 - Без амплификации
- Форма: аккордион
 - Герметичность
 - Однородность в ф
 - Скорость прихода сигнала
- 173000 каналов

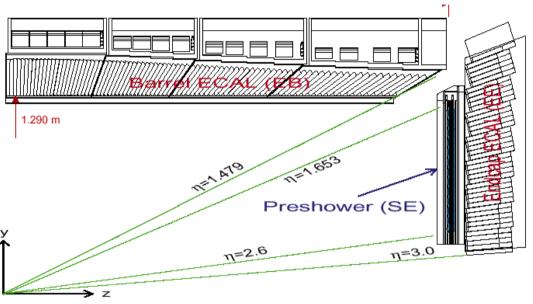
1й слой
Δη×Δφ=0.003×0.1
Высокая сегментация для
π/е идентификации и
расчета направления

Пресамплер
Δη×Δφ=0.025×0.1
Оценка потерь энергии перед калориметром

3й слой

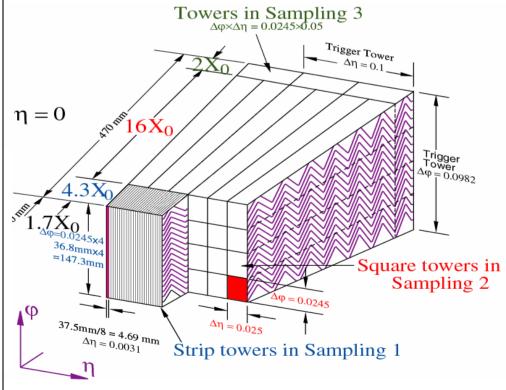
∆η×∆ф=0.05×0.025

Конец електромагнитного ливня
отсортировка
адронов


2й слой ∆η×∆ф=0.025×0.025 большая часть електромагнитного ливня

Калориметры для LHC: CMS и ATLAS

Индивидуальные характаристики

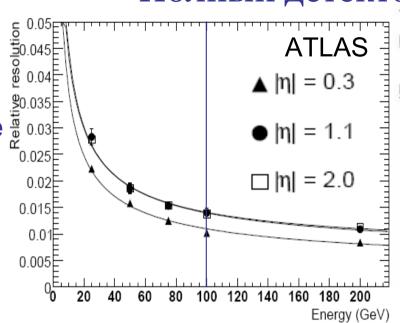


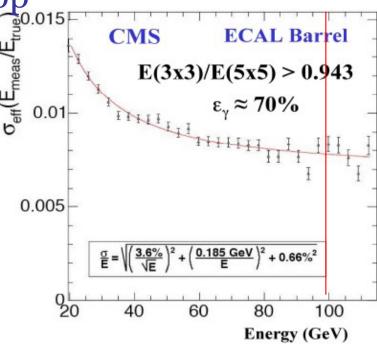
- Кристаллы 75848 PbWo₄
- Размер η×φ×глубина

 $\sim 0.0174 \times 0.0174 \times 25.8 X_0$

- $\sigma_E/E = 2.8\%/\sqrt{E \oplus 124 \text{MeV}/E \oplus 0.26\%}$
- однородность < 0.5%
- OXBAT $|\eta| < 3.0$

- 173k каналов Pb/LAr аккордион
- 3 слоя по глубине |η|<2.5
- $\sigma_{\rm E}/{\rm E} = 10\%/\sqrt{{\rm E} \oplus 0.245/{\rm E} \oplus 0.7\%}$
- направление σ_θ~50mpaд/√E
- однородность < 0.5% до 300ГэВ

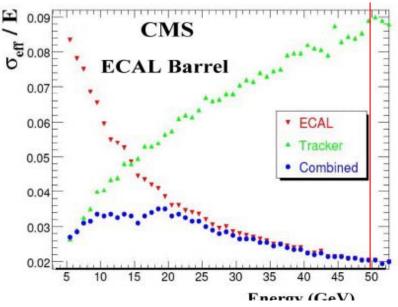




Калориметры для LHC: CMS и ATLAS

Полный детектор

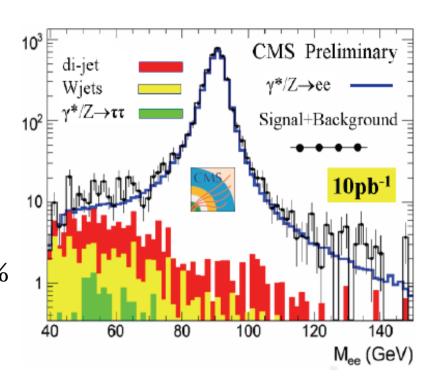
Фотоны 100 ГэВ ATLAS: 1-1.5% разрешение (все γ) CMS: 0.8% разрешение (ε_γ ~ 70%)

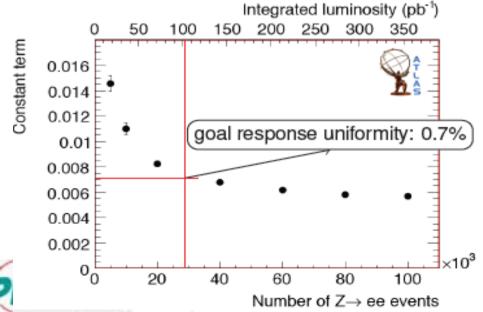


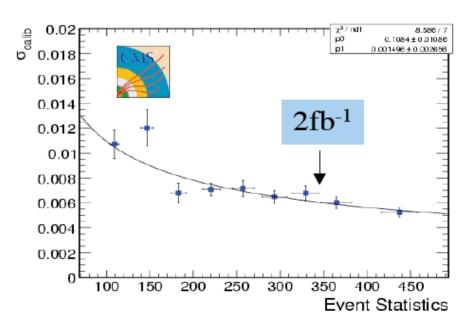
<u>Электроны 50 ГэВ</u>

ATLAS: 1.5-2.5% разрешение (только ЭМ кало) CMS: ~ 2.0%

разрешение (ЭМ кало + треккер) $|\eta| = 0.3$ ATLAS $|\eta| = 1.1$ $|\eta| = 2.0$ $|\eta| = 2.0$ $|\eta| = 2.0$

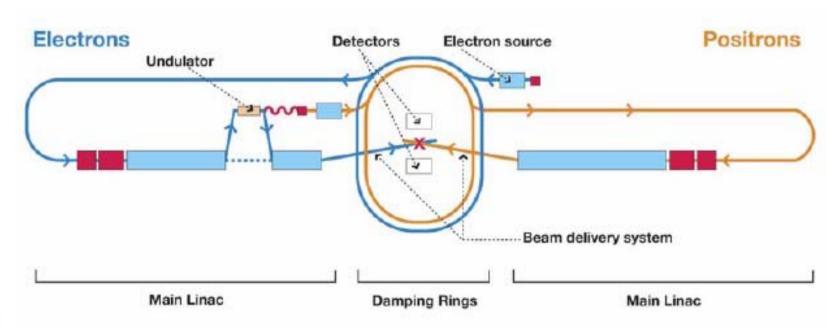




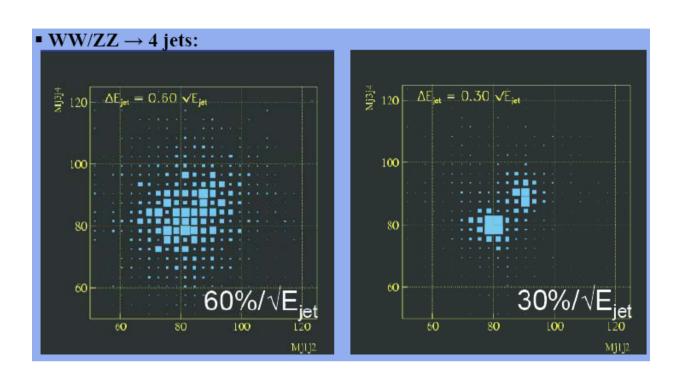

Разрешение электронов и фотонов одинаковы в CMS and ATLAS!

Калибровка калориметров ATLAS и CMS

- Калибровка известными резонансами $Z(J/\psi)$ \rightarrow ее задает энергетическую шкалу
- B ATLAS межкалибровка удаленных участков
 - ~3ok событий Z→ee (0.1фб⁻¹) для однородности ~0.7% в 0.1х0.1 (η × ф)
- B CMS, разница световыхода между отдельными кристаллами
 - Начальная калибровка: однородность до 2-3%
 - Нужно 2фб⁻¹ для оптимальной для поиска Хиггса однородности 0.6%



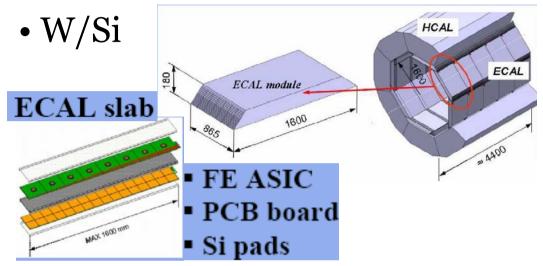
Международный линейный ускоритель


- Энергия: 2×250ГэВ (upgrade 2×500ГэВ)
- 1 interaction region
- 2 детектора (3-4 проекта)

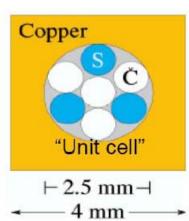
Будущие эксперименты

Сегментация очень важна для разрешения струй!

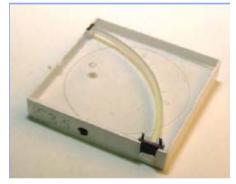
Алгоритм потока частиц: калориметр работает как треккер.


particles in jet	fraction of energy in jet	detector	single particle resolution	jet energy resolution
charged particles	60 %	tracker	$\frac{\sigma_{p_t}}{p_t} \sim 0.01\% \cdot p_t$	negligible
photons	30 %	ECAL	$\frac{\sigma_E}{E} \sim 15\%/\sqrt{E}$	$\sim 5\%/\sqrt{E_{jet}}$
neutral hadrons	10 %	HCAL+ECAL	$\frac{\sigma_E}{E} \sim 45\%/\sqrt{E}$	$\sim 15\%/\sqrt{E_{jet}}$

Будущие эксперименты

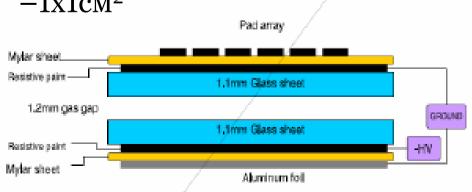

CALICE collaboration (Calorimeter for the Linear Collider Experiment)

Электромагнитный калориметр


- Электроника в детекторе
- 5х5мм² сегментация
- 0.6-1.2X₀ сегмент. глубины $(23X_0)$
- W+сцинт. стрипы
- DREAM:

сцинтиллятор+ Черенков волокна

Адронный калориметр


- •Аналоговые сцинт тайлы
 - $-3x3cM^2$
 - -Кремневый ФЭУ

•Газовый цифровой

-RPC, GEM, µMEGAS

-1X1CM²

Большое спасибо за внимание!

