Благородные газы как сцинтилляторы: применение в детекторах частиц и излучений (обзор)

Д.Ю. Акимов

ФГУП ГНЦ РФ Институт Теоретической и Экспериментальной Физики, Москва

Содержание

•Сцинтилляция и электролюминесценция благородном газе

- Энергетическое разрешение детектора на благородном газе
- Применение для спектрометрии гамма-излучения
- Разработки для физики высоких энергий
- Детекторы для низкофоновой физики

Сцинтилляция и ионизация

Сцинтилляция и ионизация на примере Хе:

Сцинтилляция

спектры излучения

превалирует молекулярный континуум

С ростом Р его доля растет

Сцинтилляция

времена высвечивания

определяются:

• временами жизни синглетного и триплетного состояний,

- их заселенностью (зависит от dE/dX) и
- скоростью рекомбинации (зависит от dE/dX и величины эл. поля)

энергетическое разрешение конденсированный или сжатый газ

Q=Q₀/(1+k*E), где к – коэфф. рекомб., зависящий от плотн. ионизации, Е – поле (в кВ/см)

электролюминесценция (пропорциональная сцинтилляция)

J. Phys. Radium 19, 103-105 (1958)

L. Koch, R. Lesueur в опытах с альфа –частицами и ксеноновым счетчиком с однородным электрическим полем, обнаружили свечение, значительно более сильное, чем сцинтилляция

 $N_{\phi} = a \cdot x \cdot (E/N) + b \cdot x$, где $a = 0.137 \text{ B}^{-1}$, $b = -4.7 \cdot 10^{-18} \text{ см}^2/\text{атом}$, E (B/cm) -напряжённость электрического поля в газовой фазе, $N = N_A \cdot \rho / A$ плотность атомов, x -путь дрейфа

Спектр излучения:

19.11.2008

Применение детекторов на благородных газах с использованием сцинтилляции и электролюминесценции

(на примере Хе)

Применение того или иного вещества в качестве детектора, как правило, определяется поставленными задачами и возможностями разработчика

- Спектрометрия рентгена и мягкого гамма (электролюминесценция)
- Попытки создания гамма-камер на жидком ксеноне
- Электромагнитные калориметры на ускорителях
- Низкофоновые эксперименты:

2β распад ¹³⁶Хе - и детектор и, целиком, 2β-распадчик! Поиск Тёмной Материи – благодаря уникальной возможности одновременно регистрировать сцинтилляцию и ионизацию Применение для спектрометрии рентгена и мягкого гамма-излучения

Газовый электролюминесцентный счетчик (GSPC) на спутнике EXOSAT B.G. Taylor et al., IEEE Trans. NS, 1978, v. NS-25, p. 813

- 1 входное Ве окно, 1140 см²
- 2 керамический корпус
- 3 область пропорциональной сцинтилляции
- 4 УФ-прозрачное окно
- 5-ФЭУ ЕМІ D319
- 6 геттер

Энергетическое разрешение на линии 5.9 кэВ (⁵⁶Fe) - 10% (ПШПМ)

Отпаянный газовый электролюминесцентный детектор

Гоганов Д.А.и др., ПТЭ, 1984, N 2, 206

- 1 рабочая зона
- 2 зона электролюминесценции
- 3 входное УФ-прозрачное окно (MgF₂)
- 4 сетки
- 5 электроды фокусирующей системы
- 6 входное Ве окно (150 мкм)

Энергетическое разрешение на линии 5.9 кэВ (⁵⁶Fe) – 10.5% (ПШПМ)

Применение для спектрометрии мягкого гамма-излучения

Электролюминесцентная гамма-камера на Хе высокого давления

Наибольшее распространение получил жидкий Xe (LXe)

LXe является очень привлекательной средой для детекторов излучений и частиц благодаря:

- высокой плотности
- большому Z

 прекрасным сцинтилляционным свойствам – высокому световыходу (близкому к NaI(Tl)) и малому времени высвечивания (~30-40 нс)

• неограниченная радиационная стойкость

для низкофоновых экспериментов:

• низкая собственная радиоактивность (нет радиоактивных долгоживущих изотопов)

• возможность одновременного измерения сцинтилляционного и ионизационного сигналов (для поиска Тёмной Материи)

Основными препятствиями для его широкого использования являлись:

Rayleigh scattering length Λ_R is 40 – 50 cm, Λ_{abs} >1*M*

19.11.2008

Комптоновский гамма-телескоп для Еу = 0.3 – 10 МэВ

LXeGRIT Liquid Xenon Gamma-Ray Imaging Telescope

Полёты в 1999 и 2000 гг.

Energy Resolution (*FWHM*) 8.8%/ \sqrt{E} Position Resolution (1 σ) 1 mm (3 dimensions) Angular Resolution (1 σ) 3° at 1.8 MeV

http://xenon.astro.columbia.edu/lxegrit/

19.11.2008

Разработки для физики высоких энергий

Электромагнитный калориметр - сцинтилляционная мода

15

Разработки для физики высоких энергий

Эксперимент MEG (Mu – > e, gamma) $\mu^+ \rightarrow e^+ + \gamma$

Stopped μ-beam: 10⁸ μ /sec

 The most intense muon beam in the world, PSI (CH) is brought to rest in a 100µm Mylar target

 Liquid Xenon calorimeter for γ detection (scintillation); energy, position, timing

 Solenoid spectrometer & drift chambers

Timing Counter for e⁺ timing

 Readout by 848 2" quartz windowed PMTs

- Maximum coverage
- Thin entrance wall
- ■10 % solid angle

from talk Giovanni Signorelli, INFN CALOR2004

ИСМАРТ 2008, Харьков

Эксперимент MEG (Mu – > e, gamma) $\mu^+
ightarrow e^+ + \gamma$

Liquid Xenon calorimeter

The PMTs

Hamamatsu **R9288ZA** Specifically developed for low-temperature operation.

19.11.2008

Разработки для физики высоких энергий

Эксперимент MEG (Mu – > e, gamma) $\mu^+ \rightarrow e^+ + \gamma$

Калибровка γ -квантами от распада π^0 в реакции $\pi^- p \rightarrow \pi^0 n$ 54.9 MeV < E(γ) < 82.9 MeV

Низкофоновые эксперименты: двойной безнейтринный бета распад ¹³⁶Хе

Эксперимент **EXO** – Enriched Xenon Observatory Предполагает в окончательном варианте 10 т ¹³⁶Хе и лазерное мечение Ва⁺⁺ как продукта распада. **0**ν**2**β T_{1/2} > 10²⁸ лет первая фаза EXO200 **0**v2β T_{1/2} > 6 ·10²⁵ лет : 200 кг обогащённого ксенона (136Хе; 80%) в жидкой фазе, без мечения Ва Задача EXO200 – продемонстрировать методику, обнаружить 2v2β моду и дать новый предел на $0_{V2\beta}$ моду (существующий предел - Т _{1/2} > 1.2 · 10²⁴ лет)

19

Низкофоновые эксперименты: двойной безнейтринный бета распад ¹³⁶Хе

Эксперимент ЕХО: первая фаза ЕХО200

поиск Тёмной Материи

"СТАНДАРТНАЯ" КОСМОЛОГИЧЕСКАЯ МОДЕЛЬ

В масштабах всей Вселенной:

поиск Тёмной Материи

Детекторы: Ge, Si, NaI(Tl), CaF, Xe ...

для сопоставления результатов используют где $C=A^2$

$$\sigma_{p} = \frac{m_{\text{red}}^{2}(p,W)}{Cm_{\text{red}}^{2}(Nucl,W)} \sigma < 10^{-6} pb$$
23

поиск Тёмной Материи

ЭКСПЕРИМЕНТ	Мишень	Тип/способ дискр.	Лаборатория
ANAIS	NaI	annual modulation	Canfranc
DAMA/NaI	NaI	annual modulation	LNGS
DAMA/LIBRA	NaI	annual modulation	LNGS
DAMA/1 ton	NaI	annual modulation	LNGS
NAIAD	NaI	PSD	Boulby
HDMS	Ge	ionization	LNGS
KIMS	CsI	PSD	Y2L (Korea)
Caf2-Kamioka	CaF2	PSD	Kamioka
DAMA/LXe	LXe	PSD	LNGS
WARP	LAr	2 phase	LNGS
XENON 10	LXe	2 phase	LNGS
Zeplin II	LXe	2 phase	Boulby
Zeplin III	LXe	2 phase	Boulby
ArDM	LAr	2 phase	Canfranc
LUX	LXe	2 phase	Dusel
CLEAN	LNe	PSD	SNOLAB
DEAP	LAr	PSD	SNOLAB
XMASS	LXe	PSD	Kamioka
CDMS	Ge	bolometer	Soudan
CRESST	CaWO4	bolometer	LNGS
EDELWEISS	Ge	bolometer	Frejus
ROSEBUD	Ge, sap, tung	bolometer	Canfranc
COUPP	FSH	droplet	
PICASSO	FSH	droplet	SNOLAB
SIMPLE	FSH	droplet	Bas Bruit
Drift	CS2 gas	TPC	Boulby
MIMAC	3He gas	TPC	

Детекторы для поиска Тёмной Материи

DAMA/XE

Первым экспериментом с LXe детектором TM был DAMA/XE в Gran Sasso, проводился параллельно с DAMA/NAI (с кристаллами NaI(TI))

- 2-л объём из сверхчистой меди
- 3 ФЭУ из низкофонового стекла с MgF₂ окнами
- Низкофоновая защита: медь, свинец, нейтронная защита
- Дискриминация фона е и у по форме импульса

Установлен предел на 2ν2β моду ¹³⁶Хе

 $T_{1/2} > 1 \cdot 10^{22}$ лет

R. Bernabei et al., Phys. Lett. B 546 (2002) 23

Детекторы для поиска Тёмной Материи

ZEPLIN I в шахте Boulby

Экспозиция - 293 кг×сут.

Полная масса Хе – 5 кг;

«Fiducial» – 3.2 кг

АС защита – 30 см жидкого сцинтиллятора

Свинцовая защита - 25 см

Дискриминация фона е и γ по форме импульса

АС защита – 0.93 т жидкого сцинтиллятора ИСМАРТ 2008, Харьков

Вакуумный и LXe объёмы и сверхчистой Cu ²⁶

ZEPLIN

19.11.2008

Детекторы для поиска Тёмной Материи

Разделение частиц разного сорта в двухфазном детекторе (Хе)

27

поиск Тёмной Материи

Двухфазный детектор **Хепоп10**

поиск Тёмной Материи

Двухфазный детектор ZEPLIN-II

поиск Тёмной Материи

Двухфазный детектор ZEPLIN-III

Подземная лаборатория Boulby

поиск Тёмной Материи

1-я фаза эксперимента(завершена)2-я фаза эксперимента:

замена ФЭУ на более низкофоновые и установка системы нейтронного «вето»

(А.Кобякин, доклад 19.11.08)

Пластик, нагруженный *G*d Пластмассовый сц-р UPS-923A

Следующее поколение детекторов для поиска Тёмной Материи детекторы большой массы

XMASS Xenon100 LUX

поиск Тёмной Материи

XMASS – многозадачный детектор

Благодаря 4*π* светосбору – низкий энергетический порог

- Xenon detector for Weakly Interacting MASSive Particles (DM search)
- Xenon MASSive detector for Solar neutrino (pp/7Be)
- Xenon neutrino MASS detector (double beta decay)

Прототип <mark>R&D</mark> FV ~ 3кг

~1 т FV ~100кг Поиск Тёмной Материи

~20 т FV ~10т Солнечные нейтрино Поиск Тёмной Материи

S. Moriyama, idm2004

ИСМАРТ 2008, Харьков

поиск Тёмной Материи

XMASS – многозадачный детектор

800 кг детектор

- 60 треугольников
- 10 ФЭУ/треугольник x 60 = 600 ФЭУ
- +212 ФЭУ между
 треугольниками
- Полное кол-во 812 ФЭУ
- Покрытие ФЭУ 67%
- Расстояние от ц-ра до фотокатода ~ 45 см
- FV: R = 25 см
- Все ФЭУ в жидком Хе

19.11.2008

поиск Тёмной Материи

поиск Тёмной Материи

Низкофоновые эксперименты

масштабированный Xenon10

поиск Тёмной Материи

Были разработаны специальные ФЭУ! И постоянно ведется поиск новых фотоприемников

НФ - низкофоновые: уменьшено содержание изотопов U и Th цепочек в ~30 и ~10 раз, соотв., ⁴⁰К – в ~ 50 ÷ 100 раз ИСМАРТ 2008, Харьков

Заключение

Детекторы на основе жидких благородных газов нашли своё применение в низкофоновой физике (благодаря своим уникальным свойствам)

Данные разработки стимулировали создание специализированных низкофоновых низкотемпературных ФЭУ и развитие методов тонкой очистки благородных газов